Smith Math 181 Fall 2008

Project 1

| affirm this work abides by the university’s Acader

Prin. wame, then Sign ™

¢ Due Thursday, October 9 at the beginning of class.

- @ Tum in the final version of your work on a separate sheet of paper with this page
stapled in front,

o Do not include scrateh work in your submission.

» Foliow the Writing Guidelines of the Grading Rubric on the last page of the course
information sheet.

{http:/imath. ups.eduf-bryansturrentha||_2008f 181inf_F all2008.htm|)

® You may use any technology that you like (e.g., caiculators, Mathematica, MATLAB,
etc.).

® You may work with others in solving these problems but there is to be no
collaboration on the written exposition of the solutions.

e Include a reference paragraph at the beginning of your paper either affirming the
work is completely yours or citing each resource you use: names of participants in
discussions (other than in-class discussions), technological tools, reference texts
employed, and anything else other than your own thoughts.

“Know thyseif?’ if | knew myself, I'd run away.” — Johann von' Goethe

Project i: Two cylinders of radius 3 inches intersect at right angles. What is the volume of
the intersection?

This is essentially the shape of the "U joint” in an cider car's drive train. It is the location
where the energy from the spinning drive shaft (which is oriented front to back in the car) is
converted into energy to spin the axles {which are oriented perpendicular to the drive shaft),

Most people fing it helps a lot to see a physical model of this shape. | have one in my office
youmay see, or you can form one yourself using chalk or cork.




Finding the Volume of the Intersection of Two Cylind . -
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Problem:

Two cylinders of radius 3 inches intersect at right angles. What is the area of the
intersection?

To solve this problem we must first try to visualize exactly what this
“intersection” shape looks like. When we intersect two cylinders at right angles, the
volumetric shape shown below is formed.

If we look at this shape from the side (through one of the cylinders, “red arrow™), we se¢
a circle. This circle has radius r = 3 inches. If we look down on the object (blue arrow)
we see a square. This square will be very useful later. In order to find its volume, first
we place the intersection in an x-y plane. To do this, we graph a circle uging the equation
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"2 + y"2 =12, with r = 3 inches. This is the circle that we saw when looking at the
object from the side. Thus, the final equation for our circle will be
x"2 +y"2 =9, The graph of this circle 1s shown below.
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To find the volume of the intersection we can use integration and the cross
sectional areas of slices cut out of the object. For this to work, we want our solid to have
cross sectional areas, which are planar or flat. This way we can find the area of the cross
section with relative ease. The volumes by slicing method states that if the cross-section
of the solid S at each point x, between the interval [a, b is a region R{x) of area A(x), anc
A 1s a continuous function of X, we can define and calculate the volume of the solid 8§ as :
definite integral (Hass, Weir, Thomas). Remember that integrals can be approximated,
by using Riemann sums. So, if we let the norm of the partition ||P]] go to zero and as the
number of subintervals n reaches infinity, we get the lim n—infinity of
> from k=1 to n, of A(x) Ax sub k. This Riemann sum is equal to the [ from ato b of
A(x)dx. In this definite integral, dx represents the height of the square (seen from above
the object). We will use this integral formula to calculate the volume of the volumetric
shape.

In order to find the volume, we need to have a function to integrate. We find this
function f{y) by solving the circle equation for the variable x.
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This function serves as length and width of our square cross-section. Since the area ofa
square with side length x, as stated earlier, is equal to X2, wg get that the square, cross-
sectional area of the volumetric shape is equal to:2v9 —y"2 = f(y).
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Finally, we integrate the function f(y) By applying the formula for finding
volumes by slicing.

V=[A(y) dy o e e Integration
o V= (VITT)dy o e o e
o V=4[O-y2)dy e
— V=49 - (y"3)/3)
> V= 4[(93)—3"3/3 ) - (9(-3) - (-3Y°3/3)]
V = 4 (36)
V =144 in"3

In conclusion, by integrating the equation for the cross-sectional area of the
intersection of two cylinders, with a radius of 3 inches, we can find the total volume of
the shape. In this case we found that the volume is equal to 144 cubic inches.



